
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

The reusability prior: comparing deep learning
models without training
To cite this article: Aydın Göze Polat and Ferda Nur Alpaslan 2023 Mach. Learn.: Sci. Technol. 4
025011

View the article online for updates and enhancements.

You may also like
Fluorescence-Signaling Aptasensor for
ATP and PDGF Detection on
Functionalized Diamond Surface
A. Rahim Ruslinda, Y. Ishiyama, X. Wang
et al.

-

Silicone-based adhesives for long-term
skin application: cleaning protocols and
their effect on peel strength
Li Liu, Kristina Kuffel, Dylan K Scott et al.

-

Synthesis of OSL nanophosphor
Li3B7O12:Mn and its dosimetric properties
Mini Agarwal, K Asokan, S K Garg et al.

-

This content was downloaded from IP address 144.122.7.37 on 03/05/2023 at 13:05

https://doi.org/10.1088/2632-2153/acc713
/article/10.1149/2.083205jes
/article/10.1149/2.083205jes
/article/10.1149/2.083205jes
/article/10.1088/2057-1976/aa91fb
/article/10.1088/2057-1976/aa91fb
/article/10.1088/2057-1976/aa91fb
/article/10.1088/1361-6498/aae002
/article/10.1088/1361-6498/aae002
/article/10.1088/1361-6498/aae002
/article/10.1088/1361-6498/aae002
/article/10.1088/1361-6498/aae002

Mach. Learn.: Sci. Technol. 4 (2023) 025011 https://doi.org/10.1088/2632-2153/acc713

OPEN ACCESS

RECEIVED

5 December 2022

REVISED

20 March 2023

ACCEPTED FOR PUBLICATION

23 March 2023

PUBLISHED

20 April 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

The reusability prior: comparing deep learning models without
training
Aydın Göze Polat∗ and Ferda Nur Alpaslan
Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
∗ Author to whom any correspondence should be addressed.

E-mail: goze.polat@metu.edu.tr

Keywords: entropy, deep learning, parameter efficiency, reusability

Abstract
Various choices can affect the performance of deep learning models. We conjecture that differences
in the number of contexts for model components during training are critical. We generalize this
notion by defining the reusability prior as follows: model components are forced to function in
diverse contexts not only due to the training data, augmentation, and regularization choices, but
also due to the model design itself. We focus on the design aspect and introduce a graph-based
methodology to estimate the number of contexts for each learnable parameter. This allows a
comparison of models without requiring any training. We provide supporting evidence with
experiments using cross-layer parameter sharing on CIFAR-10, CIFAR-100, and Imagenet-1K
benchmarks. We give examples of models that share parameters outperforming baselines that have
at least 60% more parameters. The graph-analysis-based quantities we introduced for the
reusability prior align well with the results, including at least two important edge cases. We
conclude that the reusability prior provides a viable research direction for model analysis based on
a very simple idea: counting the number of contexts for model parameters.

1. Introduction

Artificial neural networks with larger numbers of parameters often outperform their smaller counterparts.
For instance, larger models achieve state-of-the-art in various benchmarks in computer vision [1–12] and
natural language processing [13–17]. Yet there are exceptions to this pattern where some models have
significantly lower numbers of learnable parameters with a comparable or increased performance (i.e. higher
parameter efficiency). More specifically, additional unlabeled data or curation of larger datasets reduce error
in a predictable manner [18]. Hoffmann et al prove that it is possible to outperform previous state-of-the-art
models with significantly more compact ones by training with more data. They provide a systematic analysis
that reveals that increasing the number of parameters and increasing the size of the training set are equally
important for optimal usage of compute resources for training efficient models [19].

Model performance is affected from not only the number of parameters and training samples, but also
the design, augmentation, and regularization choices. We conjecture that in essence these choices impact the
overall number of concrete contexts for model parameters.

1.1. What is a context?
In figure 1, there is an informal description of context. We define the set of all contexts for a given parameter
as follows:

Definition 1. Let f iw be a function node that at least takes a given parameter node w and an associated input
hi; let Ok be any node from the set of all output or leaf nodes L in graph G, and p a path that connects f iw to
Ok. The set of all contexts for w, Cw is given by

Cw =
∪
fiw∈G

{p | fiw((hi,w), . . .)
p
⇝ Ok ∀Ok ∈ L}. (1)

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/acc713
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/acc713&domain=pdf&date_stamp=2023-4-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0853-5750
https://orcid.org/0000-0002-9806-1543
mailto:goze.polat@metu.edu.tr

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Figure 1. A context is a path from a parameter associated with an input to an output. (a) C1 is the bold path from w1 associated
with i1 through functions f 1, f 2, . . . fm contributing to the output O1. Note that w1 can contribute to O1 through multiple
contexts (e.g. C1 and C2). (b) A concrete analogy for C1 and C2 given on a small architecture.

Note that f iw can be any function node within the model graph G that at least takes parameter w and
some hidden or input feature hi. Parameter w can be used in multiple places within the model with separate
inputs leading to different contexts (i.e. fjw(hj,w, . . .)). In other words, Cw is the union of all contexts
associated with w, regardless of where w is used within the model or whether w is explicitly shared.

An important assumption we make is that f iw is mostly nonlinear in a similar manner to the mainstream
deep learning models. If all function nodes were instead equivalent to a given linear function, the model
could be collapsed into a single layer where each input is associated with a single learnable parameter. Such a
model can not learn functions more complicated than a linear map (i.e. a single matrix multiplication).

Overall, each parameter has its own set of contexts which is the union of all paths contributing to an
output node, where hi is a part of the computational graph rather than an instance of an actual output feature
from a previous layer. We use this definition of context for analyzing model architectures and defining other
relevant concepts. In figure 1, we demonstrate some of the possible contexts that can arise inside a model
graph. In figure 1(b) the computational graph of a model with three layers is described. How can model
design change the number of possible contexts? We provide an example in figure 2, comparing two
configurations that yield different numbers of contexts for the same number of parameters.

1.2. Parameter sharing
Small models often hit an upper bound early on in terms of performance for large-scale benchmarks, yet
parameter sharing is ubiquitous in deep learning. For instance, convolutional kernels [20, 21] repeat spatially
(i.e. sliding window), while recurrent modules [22–26] (or any autoregressive model such as [27–29]) repeat
temporally. Domain-specific benefits and being able to work with different input or output sizes are fair
motivations for parameter sharing; ultimately model capacity is recovered by scaling to larger models at the
cost of more floating point operations per second (FLOPS).

An explicit form of parameter sharing is cross-layer parameter sharing which ties the weights of
architecturally repeating layers together. The literature shows that, at the cost of more FLOPs, cross-layer
parameter sharing can sometimes improve parameter efficiency. Once a model with cross-layer parameter
sharing is scaled back to a reasonable capacity, it has a reasonable chance to outperform the original baseline
model [30–35]. In section 5.6 we confirm a similar outcome with our examples on some of the
EfficientNetv2 models [36].

2

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Figure 2. Given the same number of parameters, model design can change parameter efficiency: (a) w1 contributes to a single
context C1 (b) w1 contributes to an additional context C2. The reusability prior suggests that w1 is likely to be forced to function
for both contexts and hence will become more reusable. Furthermore, by relying on the repetition of w1 in both contexts, more
complex functions can be succinctly described with the same number of parameters.

1.3. Improving parameter efficiency
We claim that all mainstream DL models already share parameters directly or indirectly to various degrees,
and this affects their parameter efficiency. In section 4.1, we introduce a simple horizontal unrolling
approach that can make parameter sharing explicit for all directed acyclic graphs (DAG).

We propose the generalized notion reusability prior to disentangle the intrinsic design and training
choices that affect a model’s performance in section 4. A consequence of the reusability prior is that for
models of similar size and capacity, designs that maximize the expected number of contexts are more likely to
improve parameter efficiency. Our experiments on EfficientNetv2 as well as the literature on cross-layer
parameter sharing provide supporting evidence for the reusability prior.

We introduce a simple counting approach for model comparison. By treating relative frequencies derived
from the number of all possible contexts per learnable parameter as a probability distribution, we define
quantities for the comparison of model graphs, including entropy, expected spread, and total surprisal. We
give formal proof that when the total number of contexts is held constant, increasing the expected spread
reduces the entropy. We also introduce approaches to estimate performance for directly comparing models
without training. We compare analysis and experiment results in tables 3 and 4. We scope our work by only
focusing on the model design aspect described in section 2.2.3. The data and training aspects can be taken
into account as well when considering the number of possible contexts. We leave this for future work.

In summary, our major contributions are twofold:

• We introduce the reusability prior (section 4.2), and provide a methodology based on graph analysis
(section 4.3). To our knowledge, we are the first to introduce a generalized notion of reusability that ties
training, design, and data aspects together. For the design aspect, we introduce graph analysis based quant-
ities derived from counting the number of contexts for each learnable parameter1. Overall, the quantities
we introduce allow us to compare arbitrary DAGs or model architectures without relying on any training.

1 To our knowledge, the majority of our definitions, lemmas, theorems, and proofs are original, except for what we borrowed from the
information theory, namely entropy, surprisal, expected value, and an existing identity regarding Kullback–Leibler divergence used in
4.4.1. Despite not being able to find them in other relevant studies, we suspect that the horizontal unrolling approach and the idea of a
uniform graph we introduced in section 4.1 likely already exist in other disciplines, and we reinvented them for our use case.

3

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Our graph analysis based quantities aligned well with the empirical results, including at least two important
edge cases in section 5 in tables 3 and 4.

• We empirically confirm that it is possible to achieve higher parameter efficiency by aggressively sharing
parameters in EfficientNetv2 models. In our experiments, even though the numbers of parameters were
at least 60% larger for the original baseline EfficientNetv2-b0 models, we observed that EfficientNetv2-
S models with aggressive parameter sharing consistently outperformed the baselines on CIFAR-10 [37],
CIFAR-100 [38], and Imagenet-1K [39] image classification benchmarks.

2. Background

Fundamentally, convolutional and recurrent neural networks (RNNs) rely on architectural priors based on
reusing model components through space and time. Implicitly, RNNs share recurrent modules through time
[40] and convolutional neural networks (CNNs) share convolutional kernels through space. Moreover, it is
possible to share 3d convolution kernels spatiotemporally [41]. Reusing components in various ways is an
important underlying pattern as larger and larger architectures are adopted [33, 35, 42–48], searched
[48–56], skip connections are utilized [57–60], domain specific symmetries are captured [61–66], model size
is reduced or manipulated [30, 31, 67–72], and parameters are either globally shared or transferred from
different domains or models [48, 73–81].

DenseNet models are claimed to be compact due to the concatenation of previous features at each
subsequent layer [58]. Another strategy for compactness is used by Xception, or ‘Extreme Inception’ [82]. It
minimizes the parameters from 3× 3 convolutions by using depthwise 3× 3 convolution layers, i.e. one
independent convolution kernel per channel. Then it relies on 1× 1 convolutions which allow reusing the
depthwise convolution outputs by taking the linear combinations of the outputs. 1× 1 convolutions are an
important form of parameter sharing as they are equivalent to fully connected layers shared in the height and
width dimensions. MobileNet models [83, 84] also focus on maximizing the 1× 1 convolution operations.
Achieving compactness via soft sharing [85], student-teacher architectures [86, 87], pruning and
quantization [88] are other relevant approaches.

There is some research on the analysis of model architecture as well as entropy based approaches to
analyze how training data is utilized. For instance, Peer et al introduce batch entropy regularization that
allows training very deep models without skip connections [89]. Wickstrøm et al analyze different training
phases of deep models with information plane theory using Rényi’s entropy [90]. Levine et al theoretically
predict that there is an ‘optimal depth-to-width allocation for a given self-attention network size’. They
recommend significantly wider models as the model size increases and passes a certain threshold [91]. Bu
et al investigate the topological entropy of neural networks with ReLU activations, providing an upper bound
of O(d logw) where d is the depth and w is the width or number of neurons at each layer [92]. Our work
diverges from Bu et al as we use Shannon entropy [93] and provide a methodology that can work with any
DAG without requiring constant width or a specific model. Furthermore, we focus on parameter efficiency,
thus we opt for a probability distribution that is based on the relative frequencies derived from the number of
contexts for each parameter.

2.1. Cross-layer parameter sharing
SharesNet [30] demonstrates that for wide residual networks (WRNs) [94], it is possible to surpass the
original model’s performance with parameter sharing and then scaling (i.e. increasing depth and/or width).
Similar to lookup based CNNs [95], Savarese andMaire train a model that learns to take a linear combination
of a shared pool of kernels [31]. Then the coefficients for the linear combination of kernels are also used for
constructing a similarity matrix so that similar layers can be shared. This approach outperforms the original
WRN baseline on Imagenet-1K and CIFAR-10 with a similar or less number of parameters. Atom-coefficient
decomposed convolution [32], inspired from [96], first decomposes convolutional kernels into bases and
coefficients, and then shares the coefficients across layers. This leads to improved parameter efficiency for
very deep convolutional nets [42], ResNet, and WRN baselines. Shapeshifter networks used for neural
parameter allocation search do not make architectural assumptions such as repeated layers, but instead, learn
to reuse parameters from a limited pool by transforming them into weights for any architecture [69].

Aside from the computer vision domain, a lite BERT, bidirectional encoder representations from
transformers [33] uses cross-layer parameter sharing to first reduce the number of parameters and then scale
up to a capacity comparable to the original model [97]. This surpasses the original model’s performance for
language understanding tasks. Other relevant examples share attention weights [34], speed up training by
parameter sharing and then unsharing [98], and explore sandwich style weight sharing for generative
transformers [35].

4

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

The usage of implicit models can be considered a continuous form of cross-layer parameter sharing. Well
known examples are neural ordinary differential equation solvers [99, 100], variants of deep equilibrium
models (DEQ), and multiscale DEQs [101, 102].

2.2. Maximizing the number of contexts
Deep learning literature has various strategies for improving performance. Intrinsically, they often seem to
maximize the number of contexts for model components. In section 1.1, and figure 1 we provide more
details about what is meant by context. Essentially, the number of contexts is affected from data,
augmentation, training, regularization, and model design choices.

2.2.1. Diversity in input affecting the number of contexts
Aside from increasing the number of samples, a performance gain can be observed with data augmentation
techniques and related approaches that rely on diversifying individual training samples (e.g. cutout [103]), or
combining multiple samples (e.g. mixup [104], cutmix [105] etc).

2.2.2. Diversifying the roles of model components during training
By diversifying the hidden representations, regularization such as dropout [106], stochastic depth [107], and
block drop [60] increase the total number of contexts that can arise from the same training data.

2.2.3. Design choices impacting the role and scope of each model component
Decisions such as network depth and width, having CNN layers [20, 108], recurrent modules [40], residual
connections [57], attention layers [109], training input size, and cross-layer parameter sharing [30] impact
the expected number of contexts within a model’s computational graph.

Overall, the literature hints at an important pattern that can improve the parameter efficiency of deep
learning models. We generalize this notion as the reusability prior in section 4.2.

3. Overview

We propose a generalized notion of reusability and the reusability prior that encompasses training, data, and
model design aspects in deep learning in section 4. We then focus on the model design aspect to analyze and
compare models with graph analysis. In addition to the supporting evidence from the literature discussed in
section 2, we conduct our own experiments by applying aggressive cross-layer parameter sharing to some
EfficientNetv2 [36] models. We share the results from this strategy on image classification benchmarks in
section 5. We analyze the computational graphs of EfficientNetv2 models and compare the quantities based
on the reusability prior with the empirical results in sections 5.7 and 5.8.

4. The notion of reusability

We claim that maximizing the number of contexts for learnable parameters is critical. For instance, all
mainstream DL models directly and/or indirectly share parameters, because reusing the output of a
component in more than one place within a deep architecture is an indirect way of parameter sharing.
Intrinsically, any deep learning model can be converted to a functionally equivalent form where parameter
sharing is made explicit.

4.1. Horizontal unrolling
It is possible to horizontally duplicate parameters to remove multiple output edges in a given model graph so
that each node has a single output edge. This would reproduce all node outputs from scratch, eliminating
indirect parameter sharing (i.e. replacing feature sharing with direct parameter sharing). The resulting
unrolled models would be functionally equivalent. We illustrate our point in figure 3. The nodes in earlier
layers are duplicated more as they play more diverse roles. We introduce a simple recursive algorithm for
horizontal unrolling in appendix A.

Horizontal unrolling can convert any mainstream DL model into a form where parameter sharing is
always direct, and each parameter is duplicated as many times as their number of contexts that can arise due
to the computational graph. To our knowledge, no mainstream DL model exponentially grows in terms of
the number of parameters with depth. Hence their unrolled graphs share parameters. This manner of
parameter sharing in the unrolled graph uses exponentially fewer parameters than a more general graph
exemplified in figure 3(c) that does not share any parameters. We call such graphs a uniform graph and
formally define them as follows:

5

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Figure 3.Horizontal unrolling reproduces all shared node outputs from scratch, eliminating indirect parameter sharing or feature
reuse and instead replacing it with direct parameter sharing with duplicated parameters. (a) w1 in the original graph has contexts
C1 and C2 (b) w1 is duplicated as many times as the number of its contexts in the horizontally unrolled graph (i.e. twice in this
example) (c) A uniform graph has a single context for every parameter. It can be considered a non-shared generalization of any
model graph, as there is neither feature nor parameter reuse.

Definition 2. Let G be a model graph. G is uniform if and only if |Cwi |= 1 ∀wi ∈ G, where |Cwi | is the cardin-
ality of the set of all contexts for parameter wi.

Note that for the horizontal unrolling to work, any cyclic graph would need to be vertically unrolled into
a DAG first. This already happens in practice during training. Additionally, for differentiable approaches that
transform a set of learnable parameters to weights, the parameter transformation and the originally shared
parameters would need to be included in the graph (i.e. every wi would be replaced by the DAG that
generates it).

There is a connection between parameter efficiency and parameter sharing. By estimating what the
number of contexts in the unrolled form would be for each parameter, we quantify expected spread, total
surprisal, and entropy for computational graphs of models.

4.2. The reusability prior
We conjecture that the expected number of contexts for model components is the major reason for
differences in model performance. We introduce the reusability prior as follows:

Model components are forced to function in diverse contexts not only due to the training, data, augmentation,
and regularization choices but also due to the model design itself. These aspects explicitly or implicitly impact the
expected number of contexts for model components. Until model capacity is reached, maximizing this number
improves parameter efficiency for models of similar size and capacity. By relying on the repetition of reusable
components, a model can learn to describe an approximation of the desired function more efficiently with fewer
parameters.

We provide justifications from the literature in section 2, definitions in sections 1.1, and 4.3, finally
supporting evidence from our experiments in section 5.

6

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

4.3. Quantities for model comparison
Based on the reusability prior, and the notion of context, we define the expected spread, entropy, and total
surprisal. Then we provide two different ways of estimating model performance based on total surprisal and
expected spread.

Definition 3. For a given model graph G, the expected spread is given by

E[[log2 |C|]] =
NG∑
i=1

p(wi) log2 |Cwi | (2)

where |Cwi | is the cardinality of the set of all contexts forwi,NG the number of learnable parameters, and p(wi)
is the relative frequency:

|Cwi |
NC

(3)

where NC =
∑
wj∈G

|Cwj | the total number of contexts in G.

In section 4.4.1 we prove that the expected spread is equal to the relative entropy or Kullback–Leibler
divergence [110] of P(W) from the discrete uniform distribution.

Overall, this quantity prescribes a design maximizing the expected number of contexts2. Note that NC
and NG grow differently. In 2, similar to NC , |Cwi | grows exponentially with depth for the mainstream deep
architectures.

Definition 4. Let wi be a parameter in graph G. The entropy of the discrete probability distribution for the
parameters of G based on the number of contexts is given by

H(W) =−
NG∑
i=1

p(wi) logp(wi) (4)

where p(wi) = |Cwi |/NC is the relative frequency.

Note that p(wi) is also used in the calculation of expected spread in 3.

Definition 5. Let wi be a parameter with relative frequency p(wi) in graph G. The total surprisal is given by

SG =−
NG∑
i=1

logp(wi). (5)

Since the multiplicative p(wi) term is removed, this is no longer the expected surprisal, i.e.entropy in 4.
Consequently, this quantity gives the surprisal of each parameter equal weight3.

4.4. Maximizing the expected spreadminimizes the entropy
If we consider parameters that affect smaller portions of the model (i.e. with a smaller spread) more specific
or surprising, then for optimal encoding of the horizontally unrolled graph, expected spread would
encourage assigning shorter bit lengths for more repeated components. For instance, parameters of the
mainstream deep learning models have an exponential distribution where parameters in the earlier layers
have exponentially larger numbers of contexts. For large models with the same number of parameters, this
results in a much lower entropy compared to a uniform distribution which has the maximum possible
entropy log2NG .

Overall, when other conditions such as model size, capacity, training data etc are similar, the reusability
prior encourages increasing the expected spread. This may lead to an improvement in parameter efficiency as
the entropy, i.e. the expected bit length, is reduced. In other words, unrolled graphs have smaller description
lengths when there is a lot of repetition in the earlier layers: to reuse is to simplify.

2 When all other conditions are fixed, expected spread can be considered a measure of descriptive reusability i.e. parameter efficiency.
When comparingmodels with a similar number of learnable parameters and graph size,models with a higher expected spread can describe
more complicated functions.
3 Total surprisal can be considered a measure of descriptive ability. That is, models that have higher total surprisal can describe more
complicated functions.

7

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

4.4.1. Proofs for the connections between the quantities for model comparison
Lemma 1. Let P(W) be the discrete probability distribution of parameters based on their number of contexts in
graph G. Kullback–Leibler (KL) divergence DKL(P(W)||PU(W)) from the discrete uniform distribution PU(W) is
equivalent to the expected spread.

Proof. Let the relative frequency of wi be p(wi) = ci /NC where ci = |Cwi | and NC =
∑
wj∈G

|Cwj |. Then the KL

divergence of the probability distribution of parameters based on the number of contexts P(W) from uniform
distribution PU(W) where pU(wi) = 1/NC is given by

DKL(P(W)||PU(W)) =
n∑

i=1

p(wi) log2(p(wi)/pU(wi)) =
n∑

i=1

p(wi) log2(ci /NC/(1/NC)) =
n∑

i=1

p(wi) log2(ci)

= E[[log2 |C|]].

Note that, if P(W) is derived from the graph in figure 3(a) by directly counting the frequencies from its
unrolled version in figure 3(b), PU(W) can correspond to the uniform graph in figure 3(c). In general, the
cases where p(wj) = 0 and pU(wj) = 1/NC do not change the summation.

Theorem 1. Let NC =
∑
wj∈G

|Cwj | be the total number of all contexts. ∀Gi when NC is held constant, maximizing

the expected spread minimizes the entropy.

Note that NC is equivalent to the number of parameters in G’s horizontally unrolled uniform graph as in
figures 3(c) and 2. For graphs with identical unrolled uniform graphs, maximizing the expected spread is
equivalent to parameter sharing 4. For different architectures, as long as NC is held constant, the theorem still
holds. The formal proof is as follows:

Proof. For any discrete probability distribution, it is already known that:

HU(X) =H(X)+DKL(P(X)||PU(X)).

Therefore, from lemma 1 we show that KL divergence is always:

DKL(P(W)||PU(W)) = E[[log2 |C|]].

Thus, we can write:

HU(W) =HG(W)+DKL(P(W)||PU(W)) =HG(W)+ E[[log2 |C|]] = log2NC .

Hence, when NC is constant, reducing the entropy would increase the expected spread and vice versa.

4.5. Estimating model performance
Model performance is majorly associated with the number of parameters and the size of the training data.
For CNNs the training image size is relevant as well. Yet it is often unclear how exactly some model designs
consistently outperform others when the number of parameters as well as the training data and conditions
are similar. A consequence of the reusability prior is that by estimating the relative frequencies of each
parameter, it is possible to quantify how the model design itself impacts the entropy, expected spread, and
total surprisal. For the scenario where the training data and strategies such as regularization etc are
unchanged, we propose using total surprisal to predict model performance, with the assumption that when
other conditions are similar, a model with a higher descriptive ability would perform better. We normalize
this quantity for different model sizes and multiply it by the input size as follows:

Definition 6. Let SG be the total surprisal of graph G, N I the total number of input nodes and |G| the sum-
mation of the total number of input, output and weight nodes. The estimated performance is given by

PG = log2

(
SG

NI

|G|

)
. (6)

Note that the number of weight nodes can be larger than the number of parameters NG when explicitly
sharing parameters.

4 If one takes into account the full scope of the reusability prior, e.g. the literature in section 2.2, then diversifying input and diversifying
the role of model components with regularization would also increase the expected spread. We leave this for future work.

8

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

4.5.1. An alternative estimation of model performance
As a potential alternative to the total surprisal in (6), expected spread multiplied by the number of learnable
parametersNG can be used (i.e. replacing SG withNGE[[log2 |C|+ 1]]). This alternative estimation is given by:

P ′
G = log2

(
NGE[[log2 |C|+ 1]]

NI

|G|

)
. (7)

Our main justification for using expected spread is given in section 4.2. For models with a comparable
number of parameters and model size, models with a higher expected spread (i.e. with the ability to
approximate more complicated functions) would likely perform better after training until convergence. We
observe this in table 2 for multiple experiments and datasets.

Overall, by relying on our graph-based analysis and counting approach, we proposed two crude ways to
estimate the performance of models without any training5. In practice, both have different strengths and
weaknesses that we discuss in section 6.

5. Methodology and experiments

We analyzed the computational graphs of EfficientNetv2 [36] models, without training, to estimate the
quantities described in section 4.3. For training models from scratch in our experiments, we adopted the
same EfficientNetv2 models to explore the effects of aggressive parameter sharing. We then compared the
empirical results with the results from our graph analysis based quantities. We used Tensorflow [111] for the
experiments and our own Python [112] library for the graph-based analysis.

5.1. Analyzing computational graphs
We quantify the predictions from the reusability prior for model graphs as follows:

(i) We estimate the relative frequencies of the learnable parameters in the horizontally unrolled computa-
tional graph of a givenmodel (e.g. for the original graph in figure 3(a) it is possible to estimate the relative
frequencies from its unrolled form in figure 3(b). Please see appendix B for the full example.).

(ii) The resulting probability distribution allows deriving model-level quantities that we described in
section 4.3.

(iii) We use total surprisal and expected spread for estimating model performance as described in section 4.5.

In practice, since the EfficientNetv2 and ResNet-50 models have convolutional layers, we took into
account the full computational graph that would depend on aspects such as image size, strided convolutions,
batch normalization, and pooling layers. Thus we included all learnable parameters from convolutional
kernels, batch normalizations, and final fully connected layers for classification which have bias weights. The
Python implementation of our graph analysis relies on imitating the computational graph of EfficientNetv2
and ResNet-50 models with layers that, instead of inference, count the aggregated number of contexts. This
does not need to create a horizontally unrolled graph which would have been exponentially more expensive.
Yet this approach still allows gathering the total number of contexts for each learnable parameter in a precise
manner and calculating model-level quantities for comparison. Our full code release to reproduce the
analysis results is available at [113].

5.2. EfficientNetv2
EfficientNetv2 models have a relatively high parameter efficiency, and they have competitive performance in
image classification benchmarks. Would applying aggressive parameter sharing to an already compact model
still improve parameter efficiency? To answer this question, we conducted multiple experiments on
EfficientNetv2 models. We focused on comparing EfficientNetv2-B0, and EfficientNev2-S models. For
cross-layer parameter sharing, our experiments revealed results in agreement with the literature discussed in
section 2.1. To make it easier to minimize confounding variables due to data and training strategies, we
limited the models we trained from scratch to only EfficientNetv2. We conducted our training in a controlled
setting, spanning three different benchmarks. This helped us eliminate differences due to hardware and
hyperparameters for the selected models.

5.3. Aggressive parameter sharing
For the EfficientNetv2 experiments, we modified the official Tensorflow implementation [114] to be able to
optionally apply aggressive parameter sharing. This strategy relies on roughly treating weight matrices of the

5 We share both estimation results in tables 3 and 4 as ‘PG.’ and ‘P ′
G’.

9

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Table 1. Details on CIFAR and Imagenet datasets.

Dataset Train Validation Classes

CIFAR-10 [38] 50 000 10 000 10
CIFAR-100 [38] 50 000 10 000 100
Imagenet-1K [115] 1.28M 50 000 1000

same shape as the same. One exception is that we did not share the batch normalization weights to help the
training stay stable.

During the initialization of models with parameter sharing, we keep a global scope dictionary.
Convolutions of the same scope are only created once. Convolutional layers are represented as
four-dimensional matrices where their dimensionality is defined by channel and kernel sizes. More precisely,
we map each shared convolution to a scope name that is constructed by combining the number of input
channels, number of output channels, kernel size, and strides.

5.4. Hyperparameters
For cross-layer parameter sharing, we used a new hyperparameter which aggressively shares convolutions but
uses separate batch normalization layers: model.weight_sharing = all_but_bn. The only change we
made to the hyperparameters when comparing an original model with one that shares convolutional layers is
we used model.weight_sharing = None for the original one. We closely followed the default
hyperparameters for EfficientNetv2 given by Tan and Le [36], except for the following changes:

• For all models trainedwith CIFAR-10, instead of transfer learning, we trained from scratch.We used no aug-
mentation and trained for 300 epochs without any training stages. We used the following hyperparameters:
train_epoch = 300, batch_size = 512, data.ibase = 32,
train.lr_warmup_epoch = 5, train.lr_sched = exponential,
data.mixup_alpha = 0, data.cutmix_alpha = 0, train.lr_base = 0.016,
model.bn_momentum = 0.99.

• For all models trained with CIFAR-100, we followed the same scenario and hyperparameters, except for the
data augmentation:
train_epoch = 300, batch_size = 512, data.ibase = 32,
train.lr_sched = exponential, train.lr_warmup_epoch = 5,
data.augname = autoaug, train.lr_base = 0.016, model.bn_momentum = 0.99.

• For all models trained with Imagenet-1K, we used the following hyperparameters:
train_epoch = 352, batch_size = 400, train.stages = 4,
train.lr_sched = exponential, model.dropout_rate = 0.075,
train.lr_warmup_epoch = 5, data.ram = 2, train.ema_decay = 0.9999,
train.lr_base = 0.025, model.bn_momentum = 0.99, data.augname = randaug.

The changes in the batch size and learning rate are necessary to be able to train the models with smaller
GPUs (i.e. reduce the batch size and learning rate based on the same ratio). Note that, in the described
setting, when trained from scratch, we observed lower performance for both the EfficientNetv2-B0 and
EfficientNetv2-S models compared to [36]. Larger batch sizes and training longer can sometimes improve
performance but we observed a substantial gap in performance between V2-S-shared vs V2-B0-original
models regardless. In our previous experiments with Imagenet-1K, we tested different hyperparameters such
as gclip, batch size, as well as a larger number of training epochs. Moreover, for CIFAR-100 we tested using
no augmentation. None of these changes in the hyperparameters changed the ranking of the models in terms
of top-1 accuracy given in table 2.

5.5. Datasets
In our experiments, we trained our models from scratch using the well known object classification
benchmarks for visual recognition as given in table 1, which consists of CIFAR-10, CIFAR-100, and Imagenet
Large Scale Visual Recognition Challenge (ILSVRC2012, also referred to as Imagenet-1K).

5.6. Experiment results from aggressive parameter sharing
When EfficientNetv2 models are trained from scratch, we observed a consistent increase in the parameter
efficiency for the V2-S models with aggressive parameter sharing compared to V2-B0 which has significantly
more parameters, as given in table 2.

10

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Table 2. EfficientNetV2 [36] trained from scratch on CIFAR-10, CIFAR-100, and Imagenet-1K. At the cost of more FLOPs, V2-S-shared
models that aggressively apply cross-layer parameter sharing (bold) achieve better top-1 accuracy scores than V2-B0 models that have at
least 60% more parameters.

Model Dataset Params Score Augm. Batch Epoch FLOPs

V2-B0-shared CIFAR-10 1.7 M 95.3 None 512 300 0.7B
V2-B0-original CIFAR-10 5.9 M 95.6 None 512 300 0.7B
V2-S-shared CIFAR-10 3.1 M 96.0 None 512 300 8.8B
V2-B0-shared CIFAR-100 1.8 M 78.8 AutoAug [116] 512 300 0.7B
V2-B0-original CIFAR-100 5.9 M 80.6 AutoAug 512 300 0.7B
V2-S-shared CIFAR-100 3.2 M 81.5 AutoAug 510 300 8.8B
V2-B0-shared Imagenet-1K 3.0 M 73.7 RandAug [117] 400 352 0.7B
V2-B0-original Imagenet-1K 7.1 M 76.9 RandAug 400 352 0.7B
V2-S-shared Imagenet-1K 4.4 M 78.3 RandAug 400 352 8.8B

Table 3. Analysis without training vs our experiment results from Imagenet-1K. Note that a naive prediction would correlate the given
top-1 accuracy scores directly with the number of parameters. Our performance estimations based on total surprisal and expected
spread (PG and P ′

G respectively) instead correctly favor V2-S-shared (bold) compared to V2-B0.

Model Score PG P ′
G Exp.spread Entropy Params Img.

V2-B0-shared 73.7 25.00 25.44 746.608+ 10.2 3.0 M 224
V2-B0 76.9 26.28 26.72 746.608 10.2 7.1 M 224
V2-S-shared 78.3 26.33 26.97 1505.547 9.8 4.4 M 384
V2-S 83.2 28.72 29.28 1505.546 9.8 21.6 M 384

Table 4. Analysis without training vs some of the top-1 accuracy scores for larger models [36] for Imagenet-1K. Note that a naive
prediction would correlate the given top-1 accuracy scores directly with the number of parameters. Our graph analysis based estimations
instead assign estimated performances based on total surprisal and expected spread (PG and P ′

G respectively) to ResNet-50 (bold) lower
than V2-B3 and V2-S models which both have a smaller number of parameters.

Model Score PG P ′
G Exp.spread Entropy Params Img.

V2-B1 79.80 26.75 27.20 913.4 10.2 8.2 M 240
ResNet-50 80.30 27.25 27.60 465.4 13.3 25.6 M 380
V2-B3 82.10 27.71 28.20 1167.2 10.6 14.5 M 300
V2-S 83.6+ 28.72 29.28 1505.5 9.8 21.6 M 384
V2-M 85.10 29.9+ 30.4+ 2171.1 9.8 54.4 M 480
V2-L 85.70 30.5+ 30.9+ 3095.4 10.3 119.0 M 480

Overall, at the cost of additional FLOPs, we observed improved parameter efficiency for all three
benchmarks. Alongside the research regarding parameter sharing in the literature discussed in section 2.1,
and combined with our graph analysis results in table 3, these results provide supporting evidence for the
reusability prior.

5.7. Predictions from graph analysis vs experiment results
In our experiments with EfficientNetv2 models, V2-S-shared models consistently performed better than the
V2-B0 models, despite having a significantly lower number of parameters. In table 3, we compared the
results from our Imagenet-1K experiments with the results from our analysis of the computational graphs of
V2-B0 and V2-S models, with and without parameter sharing. Unlike a naive prediction which would
directly correlate the number of parameters with performance, our graph analysis assigned a higher score for
the V2-S-sharedmodel.

5.8. Graph analysis results for larger models
We compared our graph analysis based quantities for larger models that were trained by Tan et al in [36].6 In
table 4 the estimated performance and expected spread of ResNet is lower, while its entropy and number of
parameters are significantly higher than V2-B3 and V2-S models. Coincidentally, for the given models, the
performance estimations were roughly 1/3rd of the actual top-1 accuracies, but unlike the top-1 accuracy,
our performance estimation scores are not bounded (e.g. PG can be negative).

6 Note that, compared to our experiments, V2-Smodel has a higher top-1 accuracy of 83.6-83.9 in their experiments. This does not change
our comparison.

11

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

6. Limitations and future work

The reusability prior we defined encompasses design, training, and data aspects in deep learning. In this
work, however, we majorly focused on the design aspect. We ignored concrete contexts that can arise due to
the concrete samples from the training data itself. When counting the number of contexts, we only
considered what can arise due to the computational graph of the model as well as the input size. Generalizing
the idea of context to take into account data and training techniques such as regularization or comparing
different definitions of context is a future research direction. Another direction is to investigate potential
analogies betweenmicrostates from statistical mechanics and our definition of context.

For larger models, we omitted additional experiments with cross-layer parameter sharing. From the
perspective of reusability prior, all models we analyzed already explicitly (e.g. 1× 1 convolutions) or
implicitly (e.g. skip connections) share parameters. Therefore, we instead provided a comparison of existing
scores from [36] combined with predictions from our graph-based analysis in table 4.

An important research direction is to test the reusability prior with neural architecture search. In
practice, additional experiments will be likely necessary to first derive a utility function that aligns well with
major practical concerns that may be task specific. For instance, the performance estimation approaches we
introduced do not necessarily optimize for compute resources. For the same number of parameters, both
approaches are biased towards deeper and narrower models, since our counting approach does not use any
discount factor for the path length of a given context. Each context is counted as one, regardless of the
distance between a given parameter and a target node. During graph analysis, incrementing the total number
of contexts by a fractional number instead of incrementing by one may be an important improvement.
Furthermore, total surprisal based performance estimation would penalize very deep models with cross-layer
parameter sharing for not being descriptive enough for their large size. For shallower but exponentially larger
models, the expected spread based estimation would severely penalize them for not reusing parameters
enough. Overall, concerns including compute limitations, model size, FLOPs, and latency may be relevant
for finding the most appropriate utility function. If such a function can be created by relying on the
quantities or the graph analysis based framework we introduced, then without any training, searching viable
model designs by solely relying on graph analysis can be an interesting direction.

7. Conclusion

Not all performance can be explained directly with the number of parameters and the training data. We
introduced the reusability prior to point towards a deeper reason. We first demonstrated that, either
explicitly or implicitly, all mainstream deep learning models reuse parameters. We then introduced a
generalized notion of reusability that encompasses aspects such as training, data, and model design that
affect the number of contexts with which model components have to function. Focusing on the model design
aspect, for model comparison, we defined quantities namely entropy, expected spread, and total surprisal
which rely on analyzing the computational graph of a model. We gave formal proof that maximizing the
expected number of contexts for model components minimizes the entropy when the total number of
available contexts is the same.

To test our approach in practice, we proposed two crude performance estimation approaches based on
total surprisal and expected spread. We then compared EfficientNetv2 models by training them from scratch
with and without cross-layer parameter sharing. A naive approach would have correlated models with a
lower number of parameters with lower performance. We demonstrated a counter-example where
EfficientNetv2-S models with parameter sharing outperformed the baseline EfficientNetv2-b0 models which
have at least 60% more parameters. We gave another edge case with ResNet-50 where despite having
significantly more parameters, it underperformed compared to EfficientNetv2-B3 and V2-S models. Our
graph-based estimations of performance gave appropriate scores for both cases, correctly ranking ResNet-50
below these models in terms of performance.

In the model analysis based experiments, our counting approach allowed calculating model-level
quantities for comparison, consequently correctly predicting the rank of all models in terms of top-1
accuracy. In contrast, the naive approach of relying on the number of learnable parameters failed to correctly
rank the models of varying parameter efficiency (i.e. tables 3 and 4). In practice, as discussed in section 6, the
reusability prior and our proposed framework may lead to new approaches for neural architecture search, or
help researchers improve their model design in the right direction before any training is done.

12

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Future work with further experiments and analysis will reveal whether our graph-based approach for
estimating performance is generalizable to more models. Yet, for the models we investigated, our approach
was able to correctly delineate at least two important edge cases in tables 3 and 4. Furthermore, the
quantities we introduced based on the reusability prior aligned well with the experiment results as well as the
existing results from the literature for larger models. For estimating these quantities we only relied on the
model graphs without any training.

We conclude that the reusability prior provides a viable research direction for connecting different
aspects of deep learning under the same framework that is majorly based on a very simple idea: counting the
number of contexts for model parameters. This may lead to further research and important predictions on
how deep learning models may be affected by different design, augmentation, and training choices.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High
Performance and Grid Computing Center (TRUBA resources). We appreciate the GPU resources that were
allocated for a portion of this research.

We thank Ugur Halıcı, Emre Akbas, Selim Temizer, KasımÖztoprak, the anonymous reviewers for their
constructive input, and Georgina Romo Olivares for her support.

Conflicts of interest

The authors declare no conflict of interest.

Appendix A. Horizontal unrolling algorithm

For illustrative purposes, we provide an algorithm for the horizontal unrolling approach we described.
Algorithm 1 takes the original DAG input, creates a new DAG with a root node, and calls unrollNode for each
leaf node. In unrollNode, for each source node (i.e. each node that has an output to the current node), it
recursively unrolls until the root node is reached while adding a duplicate of the current node for each source
node. This results in a horizontally unrolled graph where the relative frequencies can be directly calculated by
counting the duplicates for each learnable parameter. The relative frequencies are treated as a discrete
probability distribution. Based on this probability distribution, we derive the model-level quantities for
comparison.

Due to the simplicity of algorithm 1, similar approaches may already exist for other domains; therefore
despite not being able to find a relevant study, we suspect that we reinvented horizontal unrolling for a new
use case. Our main use of the algorithm is to illustrate our point that all DAGs can be converted to a
functionally equivalent form where all parameter sharing is made explicit, and in this form, the number of
contexts can be directly counted.

For modern deep learning models, the horizontal unrolling algorithm would leave an unrolled graph
with an exponentially large number of duplicated components. In practice, for our graph analysis, we do not
apply horizontal unrolling to graphs at all due to the complexity. For instance, for MLPs the time and space
complexity would both be in the order of O(widthdepth). We instead use an optimized counting approach.
Please see our Github repo for additional details: https://github.com/gozepolat/priors/tree/main/reusability.

13

https://github.com/gozepolat/priors/tree/main/reusability

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

Algorithm 1. Horizontal Unrolling.

Function unrollNode(node, root) is
duplicate := Node(node.name)
for source in node.sources do
if isRoot(source) then
root.addTarget(duplicate)
continue

end
unrollNode(source).addTarget(duplicate)

end
end
Function horizontalUnroll(graph) is
unrolled := DAG(‘unrolled’)
leafNodes := getLeafNodes(graph)
for node in leafNodes do
unrollNode(node, unrolled)

end
return unrolled

end

Appendix B. An illustration of how we estimate model performances

Step by step, we analyze the graph depicted in figure 3(a) as an example. For large models, we use an
optimized algorithm but for the sake of simplicity, we rely on algorithm 1 in this example.

(a) Horizontally unroll the graph using algorithm 1. This results in the graph in figure 3(b).
(b) For each learnable parameter directly count the repetitions in the unrolled graph, i.e. collect the

frequencies: w1 = 2,w2 = 2,w3 = 2,w4 = 2,w5 = 1,w6 = 1,w7 = 1,w8 = 1
(c) Estimate the probabilities as relative frequencies: p(w1) = 2/12, p(w2) = 2/12, p(w3) = 2/12,

p(w4) = 2/12, p(w5) = 1/12, p(w6) = 1/12, p(w7) = 1/12, p(w8) = 1/12. We use these probabilities for
the calculations of the total surprisal, entropy, and expected spread.

(d) Total surprisal:−log2(2/12)− log2(2/12)− log2(2/12)− log2(2/12)− log2(1/12)− log2(1/12)−
log2(1/12)− log2(1/12) =−4× (log2(2/12)+ log2(1/12)) = 24.68

(e) Entropy:−4× (2/12× log2(2/12)+ 1/12× log2(1/12)) = 2.92
(f) Expected spread: 4× (2/12× log2(2)+ 1/12× log2(1)) = 0.67
(g) Total surprisal based performance estimation: input nodes NI = 2 and model size

|G|= 2+ 1+ 8= 11 and total surprisal= 24.68 so PG = log2(24.68× 2/11) = 2.17.
(h) Expected spread based performance estimation: there are 8 learnable parameters and the expected

spread= 0.67 so P ′
G = log2((0.67+ 1)× 8× 2/11) = 1.28.

In our Github repository, we share multiple examples of how we derive the model-level quantities
including the graphs from figures 2(a), (b) and 3(a), (c). The examples are available here: https://github.com/
gozepolat/priors/tree/main/reusability.

ORCID iDs

Aydın Göze Polat https://orcid.org/0000-0002-0853-5750
Ferda Nur Alpaslan https://orcid.org/0000-0002-9806-1543

References

[1] Kolesnikov A, Beyer L, Zhai X, Puigcerver J, Yung J, Gelly S and Houlsby N 2020 Big transfer (BiT): general visual representation
learning ECCV

[2] Jia C, Yang Y, Xia Y, Chen Y T, Parekh Z, Pham H, Le Q V, Sung Y H, Li Z and Duerig T 2021 Scaling up visual and
vision-language representation learning with noisy text supervision ICML

[3] Bao H, Dong L and Wei F 2021 BEiT: BERT pre-training of image transformers (arXiv:2106.08254)
[4] He K, Chen X, Xie S, Li Y, Doll’ar P and Girshick R B 2021 Masked autoencoders are scalable vision learners (arXiv:2111.06377)
[5] Brock A, De S, Smith S L and Simonyan K 2021 High-performance large-scale image recognition without normalization

(arXiv:2102.06171)
[6] Yuan L et al 2021 Florence: a new foundation model for computer vision (arXiv:2111.11432)
[7] Ding M, Xiao B, Codella N C F, Luo P, Wang J and Yuan L 2022 DaViT: dual attention vision transformers (arXiv:2204.03645)

14

https://github.com/gozepolat/priors/tree/main/reusability
https://github.com/gozepolat/priors/tree/main/reusability
https://orcid.org/0000-0002-0853-5750
https://orcid.org/0000-0002-0853-5750
https://orcid.org/0000-0002-9806-1543
https://orcid.org/0000-0002-9806-1543
https://arxiv.org/abs/2106.08254
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2102.06171
https://arxiv.org/abs/2111.11432
https://arxiv.org/abs/2204.03645

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

[8] Riquelme C, Puigcerver J, Mustafa B, Neumann M, Jenatton R, Pinto A S, Keysers D and Houlsby N 2021 Scaling vision with
sparse mixture of experts NeurIPS

[9] Zhai X, Kolesnikov A, Houlsby N and Beyer L 2021 Scaling vision transformers (arXiv:2106.04560)
[10] Yu J, Wang Z, Vasudevan V, Yeung L, Seyedhosseini M and Wu Y 2022 CoCa: contrastive captioners are image-text foundation

models (arXiv:2205.01917)
[11] Wortsman M et al 2022 Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing

inference time (arXiv:2203.05482)
[12] Dai Z, Liu H, Le Q V and Tan M 2021 CoAtNet: marrying convolution and attention for all data sizes (arXiv:2106.04803)
[13] Narayanan D et al 2021 SC21: Int. Conf. for High Performance Computing, Networking, Storage and Analysis pp 1–14
[14] Brown T et al 2020 Language models are few-shot learners Advances in Neural Information Processing Systems vol 33, ed

H Larochelle M Ranzato, R Hadsell, M Balcan and H Lin (Curran Associates, Inc.) pp 1877–901
[15] Fedus W, Zoph B and Shazeer N 2022 J. Mach. Learn. Res. 23 1–39
[16] Du N, Huang Y et al 2022 GLaM: efficient scaling of language models with mixture-of-experts Proc. 39th Int. Conf. on Machine

Learning (Proc. of Machine Learning Research) vol 162 ed K Chaudhuri, S Jegelka, L Song, C Szepesvari, G Niu and S Sabato
(PMLR) pp 5547–69

[17] Zou X, Yin D, Zhong Q, Yang H, Yang Z and Tang J 2021 Controllable generation from pre-trained language models via inverse
prompting Proc. 27th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining (KDD’ 21) (New York: Association for
Computing Machinery) pp 2450–60

[18] Hestness J, Narang S, Ardalani N, Diamos G F, Jun H, Kianinejad H, Patwary MM A, Yang Y and Zhou Y 2017 Deep learning
scaling is predictable, empirically (arXiv:1712.00409)

[19] Hoffmann J et al 2022 Training compute-optimal large language models (arXiv:2203.15556)
[20] Fukushima K and Miyake S 1982 Neocognitron: A self-organizing neural network model for a mechanism of visual pattern

recognition Competition and Cooperation in Neural Nets (Berlin: Springer) pp 267–85
[21] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Proc. IEEE 86 2278–324
[22] Rumelhart D E, Hinton G E and Williams R J 1986 Nature 323 533–6
[23] Schmidhuber J 1993 Page 150 ff demonstrates credit assignment across the equivalent of 1,200 layers in an unfolded RNN
[24] Gers F A, Schmidhuber J and Cummins F 1999 Learning to forget: continual prediction with LSTM IET 2 850–5
[25] Pascanu R, Gulcehre C, Cho K and Bengio Y 2014 How to construct deep recurrent neural networks Proc. 2nd Int. Conf. on

Learning Representations (ICLR 2014)
[26] Chung J, Gulcehre C, Cho K and Bengio Y 2014 Empirical evaluation of gated recurrent neural networks on sequence modeling

NIPS 2014 Workshop on Deep Learning December 2014
[27] Katharopoulos A, Vyas A, Pappas N and Fleuret F 2020 Transformers are rnns: fast autoregressive transformers with linear

attention Proc. 37th Int. Conf. on Machine Learning ICML’20 (JMLR.org)
[28] Yang Z, Dai Z, Yang Y, Carbonell J G, Salakhutdinov R and Le Q V 2019 XLNet: generalized autoregressive pretraining for

language understanding NeurIPS
[29] van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A W and Kavukcuoglu K 2016

WaveNet: a generative model for raw audio SSW
[30] Boulch A 2018 Pattern Recognit. Lett. 103 53–59
[31] Savarese P and Maire M 2019 Learning implicitly recurrent CNNs through parameter sharing Int. Conf. on Learning

Representations
[32] Wang Z, Cheng X, Sapiro G and Qiu Q 2020 ACDC: weight sharing in atom-coefficient decomposed convolution

(arXiv:2009.02386)
[33] Lan Z, Chen M, Goodman S, Gimpel K, Sharma P and Soricut R 2020 Albert: a lite BERT for self-supervised learning of language

representations 8th Int. Conf. on Learning Representations (ICLR 2020) (Addis Ababa, Ethiopia, April 26–30 2020)
(OpenReview.net)

[34] Xiao T, Li Y, Zhu J, Yu Z and Liu T 2019 Sharing attention weights for fast transformer Proc. 28th Int. Joint Conf. on Artificial
Intelligence (IJCAI-19) (Int. Joint Conferences on Artificial Intelligence Organization) pp 5292–8

[35] Reid M, Marrese-Taylor E and Matsuo Y 2021 Subformer: exploring weight sharing for parameter efficiency in generative
transformers Findings of the Association for Computational Linguistics: Emnlp 2021 (Punta Cana, Dominican Republic:
Association for Computational Linguistics) pp 4081–90

[36] Tan M and Le Q 2021 Efficientnetv2: smaller models and faster training Int. Conf. on Machine Learning (PMLR) pp 10096–106
[37] Krizhevsky A, Nair V and Hinton G 2014 (available at: http://www.cs.toronto.edu/kriz/cifar.html)
[38] Krizhevsky A, Hinton G et al 2009 Learning multiple layers of features from tiny images
[39] Deng J, Dong W, Socher R, Li L J, Li K and Fei-Fei L 2009 Imagenet: a large-scale hierarchical image database IEEE Conf. on

Computer Vision and Pattern Recognition 2009 (CVPR 2009) (IEEE) pp 248–55
[40] Hochreiter S and Schmidhuber J 1997 Neural Comput. 9 1735–80
[41] Tran D, Bourdev L, Fergus R, Torresani L and Paluri M 2015 Learning spatiotemporal features with 3D convolutional networks

2015 IEEE Int. Conf. on Computer Vision (ICCV) (IEEE) pp 4489–97
[42] Simonyan K and Zisserman A 2015 Very deep convolutional networks for large-scale image recognition 3rd Int. Conf. on Learning

Representations (ICLR 2015) (San Diego, CA, 7–9 May 2015) (Conf. Track Proc.) ed Y Bengio and Y LeCun
[43] Krizhevsky A, Sutskever I and Hinton G E 2012 ImageNet Classification with deep convolutional neural networks Proc. 25th Int.

Conf. on Neural Information Processing Systems NIPS’12 (Redhook, NY : Curran Associates Inc.) pp 1097–105
[44] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A 2015 Going deeper with

convolutions Proc. IEEE Conf. on Computer Vision and Pattern Recognition pp 1–9
[45] Canziani A, Paszke A and Culurciello E 2016 An analysis of deep neural network models for practical applications

(arXiv:1605.07678)
[46] Singh S, Hoiem D and Forsyth D 2016 Swapout: learning an ensemble of deep architectures Advances in Neural Information

Processing Systems pp 28–36
[47] Wang J, Yang Y, Mao J, Huang Z, Huang C and Xu W 2016 Cnn-rnn: a unified framework for multi-label image classification

Proc. IEEE Conf. on Computer Vision and Pattern Recognition pp 2285–94
[48] Pham H, Guan M Y, Zoph B, Le Q V and Dean J 2018 Efficient neural architecture search via parameter sharing ICML
[49] Pham H, Guan M, Zoph B, Le Q and Dean J 2018 Efficient neural architecture search via parameters sharing Proc. 35th Int. Conf.

on Machine Learning (Proc. of Machine Learning Research) vol 80 ed J Dy and A Krause (PMLR) pp 4095–104

15

https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2205.01917
https://arxiv.org/abs/2203.05482
https://arxiv.org/abs/2106.04803
https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2203.15556
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1049/cp:19991218
https://doi.org/10.1016/j.patrec.2018.01.006
https://doi.org/10.1016/j.patrec.2018.01.006
https://arxiv.org/abs/2009.02386
http://www.cs.toronto.edu/kriz/cifar.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1605.07678

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

[50] Golovin D, Solnik B, Moitra S, Kochanski G, Karro J and Sculley D 2017 Google vizier: a service for black-box optimization Proc.
23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (ACM) pp 1487–95

[51] Chen Y, Hoffman MW, Colmenarejo S G, Denil M, Lillicrap T P and de Freitas N 2016 Learning to learn for global optimization
of black box functions (arXiv:1611.03824)

[52] Negrinho R and Gordon G J 2017 DeepArchitect: automatically designing and training deep architectures (arXiv:1704.08792)
[53] Bello I, Zoph B, Vasudevan V and Le Q V 2017 Neural optimizer search with reinforcement learning Proc. 34th Int. Conf. on

Machine Learning, (ICML 2017) (Sydney, NSW, Australia, 6–11 August 2017) (Proc. of Machine Learning Research) vol 70 ed
D Precup and Y W Teh (PMLR) pp 459–68

[54] Garg V K and Kalai A T 2016 Meta-unsupervised-learning: a supervised approach to unsupervised learning (arXiv:1612.09030)
[55] Andrychowicz M, Denil M, Gomez S, Hoffman MW, Pfau D, Schaul T and de Freitas N 2016 Learning to learn by gradient

descent by gradient descent Advances in Neural Information Processing Systems pp 3981–9
[56] Lan G, de Vries L and Wang S 2019 Evolving efficient deep neural networks for real-time object recognition IEEE Symp. Series on

Computational Intelligence (SSCI 2019) (Xiamen, China, 6–9 December 2019) (IEEE) pp 2571–8
[57] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proc. IEEE Conf. on Computer Vision and

Pattern Recognition vol 2016-Decem pp 770–8
[58] Huang G, Liu Z, van der Maaten L and Weinberger K Q 2017 Densely connected convolutional networks 2017 IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR 2017) (Honolulu, HI, USA, 21-26 July 2017) (IEEE Computer Society) pp 2261–9
[59] Zhang K, Sun M, Han T X, Yuan X, Guo L, Liu T, Han X, Yuan X, Guo L and Liu T 2017 IEEE Trans. Circuits Syst. Video Technol.

28 1303–14
[60] Wu Z, Nagarajan T, Kumar A, Rennie S, Davis L S, Grauman K and Feris R S 2018 BlockDrop: dynamic inference paths in

residual networks 2018 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2018) (Salt Lake City, UT, USA, 18–22 June
2018) (Computer Vision Foundation/IEEE Computer Society) pp 8817–26

[61] Zhou A, Knowles T and Finn C 2021 Meta-learning symmetries by reparameterization 9th Int. Conf. on Learning Representations
(ICLR 2021) (Virtual Event, Austria, 3–7 May 2021) (OpenReview.net)

[62] Dehmamy N, Walters R, Liu Y, Wang D and Yu R 2021 Advances in Neural Information Processing Systems vol 34
[63] de Haan P, Cohen T S and Welling M 2020 Advances in Neural Information Processing Systems vol 33 pp 3636–46
[64] Cohen T, Weiler M, Kicanaoglu B and Welling M 2019 Gauge equivariant convolutional networks and the icosahedral CNN Int.

Conf. on Machine Learning (PMLR) pp 1321–30
[65] Tai K S, Bailis P and Valiant G 2019 Equivariant transformer networks Int. Conf. on Machine Learning (PMLR) pp 6086–95
[66] Yeh R A, Hu Y T, Hasegawa-Johnson M and Schwing A 2022 Equivariance discovery by learned parameter-sharing Int. Conf. on

Artificial Intelligence and Statistics (PMLR) pp 1527–45
[67] Louizos C, Ullrich K and Welling M 2017 Bayesian compression for deep learning Advances in Neural Information Processing

Systems pp 3290–300
[68] Ullrich K, Meeds E and Welling M 2017 Soft weight-sharing for neural network compression 5th Int. Conf. on Learning

Representations (ICLR 2017) (Toulon, France, 24-26 April 2017) (Conf. Track Proc.) (OpenReview.net)
[69] Plummer B A, Dryden N, Frost J, Hoefler T and Saenko K 2022 Neural parameter allocation search The Tenth Int. Conf. on

Learning Representations (ICLR 2022) (Virtual Event, 25–29 April 2022) (OpenReview.net)
[70] Tang C, Zhao Y, Wang G, Luo C, Xie W and Zeng W 2022 Sparse MLP for image recognition: is self-attention really necessary?

36th AAAI Conf. on Artificial Intelligence (AAAI 2022) 34th Conf. on Innovative Applications of Artificial Intelligence (IAAI 2022)
12th Symp. on Educational Advances in Artificial Intelligence (EAAI 2022) (Virtual Event, 22 February–1 March 2022) (AAAI Press)
pp 2344–51

[71] Malach E, Yehudai G, Shalev-Schwartz S and Shamir O 2020 Proving the lottery ticket hypothesis: pruning is all you need Int.
Conf. on Machine Learning (PMLR) pp 6682–91

[72] Frankle J and Carbin M 2019 The lottery ticket hypothesis: finding sparse, trainable neural networks 7th Int. Conf. on Learning
Representations (ICLR 2019) (New Orleans, LA, USA, 6–9 May 2019) (OpenReview.net)

[73] Ma J, Zhao Z, Chen J, Li A, Hong L and Chi E H 2019 SNR: sub-network routing for flexible parameter sharing in multi-task
learning Proc. AAAI Conf. on Artificial Intelligence vol 33 pp 216–23

[74] Tan J H, Tan Y H, Chan C S and Chuah J H 2022 Neurocomputing 482 60–72
[75] Murdock C, Li Z, Zhou H and Duerig T 2016 Blockout: dynamic model selection for hierarchical deep networks CVPR 2016
[76] Yosinski J, Clune J, Bengio Y and Lipson H 2014 How transferable are features in deep neural networks? Advances in Neural

Information Processing Systems pp 3320–8
[77] Saxena S and Verbeek J 2016 Convolutional neural fabrics Advances in Neural Information Processing Systems pp 4053–61
[78] Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu A A, Pritzel A and Wierstra D 2017 Pathnet: evolution channels gradient

descent in super neural networks (arXiv:1701.08734)
[79] Wu L Y, Fisch A, Chopra S, Adams K, Bordes A and Weston J 2018 Starspace: embed all the things! Proc. 32nd AAAI Conf. on

Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18) and the 8th AAAI Symp. on
Educational Advances in Artificial Intelligence (EAAI-18) (New Orleans, Louisiana, USA, 2–7 February 2018) ed S A McIlraith and
K QWeinberger (AAAI Press) pp 5569–77

[80] Finn C, Abbeel P and Levine S 2017 Model-agnostic meta-learning for fast adaptation of deep networks Proc. 34th Int. Conf. on
Machine Learning (ICML 2017) (Sydney, NSW, Australia, 6-11 August 2017) (Proc. of Machine Learning Research) vol 70 ed
D Precup and Y W Teh (PMLR) pp 1126–35

[81] Liu H, Simonyan K and Yang Y 2019 DARTS: differentiable architecture search 7th Int. Conf. on Learning Representations (ICLR
2019) (New Orleans, LA, USA, 6-9 May 2019) (OpenReview.net)

[82] Chollet F 2017 Xception: deep learning with depthwise separable convolutions 2017 IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR 2017) (Honolulu, HI, USA, 21–26 July 2017) (IEEE Computer Society) pp 1800–7

[83] Sandler M, Howard A G, Zhu M, Zhmoginov A and Chen L 2018 Mobilenetv2: inverted residuals and linear bottlenecks 2018
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2018) (Salt Lake City, UT, USA, 18–22 June 2018) (Computer
Vision Foundation/IEEE Computer Society) pp 4510–20

[84] Howard A et al 2019 Searching for mobilenetv3 2019 IEEE/CVF Int. Conf. on Computer Vision, (ICCV 2019) (Seoul, Korea
(South), 27 October–2 November 2019) (IEEE) pp 1314–24

[85] Nowlan S J and Hinton G E 1992 Neural Comput. 4 473–93
[86] Hinton G, Vinyals O and Dean J 2015 Distilling the knowledge in a neural network (arXiv:1503.02531)

16

https://arxiv.org/abs/1611.03824
https://arxiv.org/abs/1704.08792
https://arxiv.org/abs/1612.09030
https://doi.org/10.1109/TCSVT.2017.2654543
https://doi.org/10.1109/TCSVT.2017.2654543
https://doi.org/10.1016/j.neucom.2022.01.081
https://doi.org/10.1016/j.neucom.2022.01.081
https://arxiv.org/abs/1701.08734
https://doi.org/10.1162/neco.1992.4.4.473
https://doi.org/10.1162/neco.1992.4.4.473
https://arxiv.org/abs/1503.02531

Mach. Learn.: Sci. Technol. 4 (2023) 025011 A G Polat and F N Alpaslan

[87] Buciluǎ C, Caruana R and Niculescu-Mizil A 2006 Model compression Proc. 12th ACM SIGKDD International Conf. on Knowledge
Discovery and Data Mining pp 535–41

[88] Han S, Mao H and Dally W J 2016 Deep compression: compressing deep neural network with pruning, trained quantization and
huffman coding 4th Int. Conf. on Learning Representations (ICLR 2016) (San Juan, Puerto Rico, 2–4 May 2016) (Conf. Track Proc.)
ed Y Bengio and Y LeCun

[89] Peer D, Keulen B, Stabinger S, Piater J and Rodriguez-sanchez A 2022 Improving the trainability of deep neural networks through
layerwise batch-entropy regularization (arXiv:2208.01134)

[90] Wickstrøm K, Løkse S, Kampffmeyer M, Yu S, Príncipe J C and Jenssen R 2019 Information plane analysis of deep neural
networks via matrix-based Renyi ′s entropy and tensor kernels (arXiv:1909.11396)

[91] Levine Y, Wies N, Sharir O, Bata H and Shashua A 2020 Limits to depth efficiencies of self-attention Advances in Neural
Information Processing Systems 33: Annual Conf. on Neural Information Processing Systems 2020 (6–12 December 2020) ed
H Larochelle, M Ranzato, R Hadsell, M Balcan and H Lin

[92] Bu K, Zhang Y and Luo Q 2020 Depth-width trade-offs for neural networks via topological entropy (arXiv:2010.07587)
[93] Shannon C E 1948 Bell Syst. Tech. J. 27 379–423
[94] Zagoruyko S and Komodakis N 2016 Wide residual networks Proc. British Machine Vision Conf. 2016 (York, UK, 19–22 September

2016) ed R CWilson, E R Hancock and W A P Smith (BMVA Press)
[95] Bagherinezhad H, Rastegari M and Farhadi A 2017 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) pp 860–9
[96] Qiu Q, Cheng X, Calderbank A R and Sapiro G 2018 Dcfnet: deep neural network with decomposed convolutional filters Proc.

35th Int. Conf. on Machine Learning (ICML) StockholmsmäSsan, Stockholm (10–15 July 2018) vol 80 ed J G Dy and A Krause
(PMLR) pp 4195–204

[97] Devlin J, Chang M, Lee K and Toutanova K 2019 BERT: pre-training of deep bidirectional transformers for language
understanding Proc. 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019) (Minneapolis, MN, 2–7 June 2019) (Volume 1 Long and Short Papers) ed J Burstein, C Doran and
T Solorio (Association for Computational Linguistics) pp 4171–86

[98] Yang S, Hou L, Song X, Liu Q and Zhou D 2021 Speeding up deep model training by sharing weights and then unsharing
(arXiv:2110.03848)

[99] Chen R T Q, Rubanova Y, Bettencourt J and Duvenaud D K 2018 Advances in Neural Information Processing Systems vol 31
[100] Dupont E, Doucet A and Teh Y W 2019 Advances in Neural Information Processing Systems vol 32
[101] Bai S, Kolter J Z and Koltun V 2019 Advances in Neural Information Processing Systems vol 32
[102] Bai S, Koltun V and Kolter J Z 2020 Advances in Neural Information Processing Systems vol 33 pp 5238–50
[103] DeVries T and Taylor G W 2017 Improved regularization of convolutional neural networks with cutout (arXiv:1708.04552)
[104] Zhang H, Cisse M, Dauphin Y N and Lopez-Paz D 2017 mixup: beyond empirical risk minimization (arXiv:1710.09412)
[105] Yun S, Han D, Oh S J, Chun S, Choe J and Yoo Y 2019 Cutmix: regularization strategy to train strong classifiers with localizable

features Proc. IEEE/CVF Int. Conf. on Computer Vision pp 6023–32
[106] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 J. Mach. Learn. Res. 15 1929–58
[107] Huang G, Sun Y, Liu Z, Sedra D and Weinberger K Q 2016 Deep networks with stochastic depth European Conf. on Computer

Vision (Berlin: Springer) pp 646–61
[108] LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Neural Comput. 1 541–51
[109] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L and Polosukhin I 2017 Attention is all you need

Advances in Neural Information Processing Systems 30: Annual Conf. on Neural Information Processing Systems 2017 (Long Beach,
CA, USA, 4–9 December 2017) ed I Guyon, U von Luxburg, S Bengio, H MWallach, R Fergus, S V N Vishwanathan and R Garnett
pp 5998–6008

[110] Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79–86
[111] Abadi M et al 2015 Tensorflow: large-scale machine learning on heterogeneous systems software available from tensorflow.org

(available at: http://tensorflow.org/)
[112] Van Rossum G and Drake F L 2009 Python 3 Reference Manual (Scotts Valley, CA: CreateSpace)
[113] Polat A 2023 gozepolat/priors: the reusability prior (https://doi.org/10.5281/zenodo.7805346)
[114] Google 2022 Efficientnetv2 official implementation (available at: https://github.com/google/automl/tree/master/efficientnetv2)
[115] Russakovsky O et al 2015 Int. J. Comput. Vis. 115 211–52
[116] Cubuk E D, Zoph B, Mané D, Vasudevan V and Le Q V 2019 Autoaugment: learning augmentation strategies from data IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR 2019) (Long Beach, CA, USA, 16–20 June 2019) (Computer Vision
Foundation/IEEE) pp 113–23

[117] Cubuk E D, Zoph B, Shlens J and Le Q V 2019 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops
(CVPRW) pp 3008–17

17

https://arxiv.org/abs/2208.01134
https://arxiv.org/abs/1909.11396
https://arxiv.org/abs/2010.07587
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/2110.03848
https://arxiv.org/abs/1708.04552
https://arxiv.org/abs/1710.09412
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
tensorflow.org
http://tensorflow.org/
https://doi.org/10.5281/zenodo.7805346
https://github.com/google/automl/tree/master/efficientnetv2
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

	The reusability prior: comparing deep learning models without training
	1. Introduction
	1.1. What is a context?
	1.2. Parameter sharing
	1.3. Improving parameter efficiency

	2. Background
	2.1. Cross-layer parameter sharing
	2.2. Maximizing the number of contexts
	2.2.1. Diversity in input affecting the number of contexts
	2.2.2. Diversifying the roles of model components during training
	2.2.3. Design choices impacting the role and scope of each model component

	3. Overview
	4. The notion of reusability
	4.1. Horizontal unrolling
	4.2. The reusability prior
	4.3. Quantities for model comparison
	4.4. Maximizing the expected spread minimizes the entropy
	4.4.1. Proofs for the connections between the quantities for model comparison

	4.5. Estimating model performance
	4.5.1. An alternative estimation of model performance

	5. Methodology and experiments
	5.1. Analyzing computational graphs
	5.2. EfficientNetv2
	5.3. Aggressive parameter sharing
	5.4. Hyperparameters
	5.5. Datasets
	5.6. Experiment results from aggressive parameter sharing
	5.7. Predictions from graph analysis vs experiment results
	5.8. Graph analysis results for larger models

	6. Limitations and future work
	7. Conclusion
	Appendix A. Horizontal unrolling algorithm
	Appendix B. An illustration of how we estimate model performances
	References

